Abstract
The Alzheimer's amyloid beta protein (A beta) precursor (APP) is proteolytically cleaved by beta-secretase to N- and C-terminal fragments sAPPbeta and CTFbeta, respectively. Subsequently, CTFbeta is cleaved by gamma-secretase to generate A beta. We previously showed that the levels of secreted A beta and sAPPbeta were significantly reduced upon removal of glycosylphosphatidylinositol (GPI)-anchored proteins from either primary brain cells or Chinese hamster ovary cultures. The results indicated that GPI-anchored proteins facilitated beta-secretase activity. In this report, we strengthen the previous findings by demonstrating that CTFbeta, like sAPPbeta, is also reduced upon removal of GPI-anchored proteins and that sAPPbeta does not accumulate in an intracellular compartment. This facilitation pathway does not appear to be important for the processing of a disease-linked mutant form of APP (670NL), known to be a superior beta-secretase substrate. A novel aspartyl protease, BACE, responsible for beta-secretase activity in the brain is not GPI-anchored. However, BACE in brain membranes accumulate in lipid rafts, a compartment marked by the accumulation of GPI-anchored proteins. This finding is consistent with the hypothesis that BACE interacts with GPI-anchored proteins that facilitate its activity possibly by chaperoning it into lipid rafts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.