Abstract
Peculiar properties of morphological structures of organelle membranes were studied by fluorescent confocal microscopy. The list of objects in our experiments was represented by mitochondria, chloroplasts and vacuoles. During this study, identification of lipid microinclusions having the form of such lipid-protein structural microformations as lipid-protein microdomains, vesicles and membrane tubular structures (cytoplasmic transvacuolar strands and nanotubes) located in organelle membranes or bound up with them was conducted. Such membrane probes as laurdan, DPH, ANS and bis-ANS were used. Comparison of fluorescence intensity of these membrane probes was conducted. This investigation of the morphological properties of lipid-protein structural microformations was accompanied with analysis of 1) the phase state and 2) dynamics of microviscosity variations in the membrane elements of isolated plant cell organelles. Distributions of laurdan fluorescence generalized polarization (GP) values for the membrane on the whole and for the intensively fluorescing membrane segments were obtained. It was discovered that the microviscosity of intensively fluorescing membrane segments essentially differed from the microviscosity of the rest part of the membrane. In conclusion, some results of the study of peculiar properties of lipid-protein structural microformations related to the structure of organelle membranes and the discoveries made in this investigation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.