Abstract
We examined the lipid profiles in the aqueous humor (AH) of myopic patients to identify differences and investigate the relationships among dissertating lipids. Additionally, we assessed spherical equivalents and axial lengths to explore the pathogenesis of myopia. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed to qualitatively and quantitatively analyze the lipid composition of samples from myopic patients with axial lengths <26 mm (Group A) and >28 mm (Group B). Differences in lipid profiles between the two groups were determined using univariate and multivariate analyses. Receiver operator characteristic (ROC) curves were used to identify discriminating lipids. Spearman correlation analysis explored the associations between lipid concentrations and biometric parameters. Three hundred and nine lipids across 21 lipid classes have been identified in this study. Five lipids showed significant differences between Group B and Group A (VIP >1, P < 0.05): BMP (20:3/22:3), PG (22:1/24:0), PS (14:1/22:4), TG (44:2)_FA18:2, and TG (55:3)_FA18:1. The area under the curve (AUC) for these lipids was >0.75. Notably, the concentrations of BMP (20:3/22:3), PS (14:1/22:4), and TG (55:3)_FA18:1 were correlated with spherical equivalents, while BMP (20:3/22:3) and PS (14:1/22:4) correlated with axial lengths. Our study identified five differential lipids in myopic patients, with three showing significant correlations with the degree of myopia. These findings enhance our understanding of myopia pathogenesis through lipidomic alterations, emphasizing changes in cell membrane composition and function, energy metabolism and storage, and pathways involving inflammation, peroxisome proliferator-activated receptors (PPAR), and metabolic processes related to phosphatidylserine, phosphatidylglycerol, triglycerides, polyunsaturated fatty acids, and cholesterol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.