Abstract

Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.

Highlights

  • Gestational diabetes mellitus (GDM) is defined as glucose intolerance that begins or is first recognized during pregnancy

  • These results indicate that the studied groups did not differ significantly in respect of age, body mass index (BMI), insulin concentration, homeostasis model assessment of insulin resistance (HOMA-IR) HOMA-ß, QUICKI and low density lipoprotein (LDL) levels

  • The concentrations of fasting plasma glucose (FPG) and high density lipoprotein (HDL) were higher in the GDM group these differences were at a borderline of significance (85 mg/dL vs 82 mg/dL p = 0.0565; 74.1 mg/dL vs 61.4 mg/dL; p = 0.0802), respectively

Read more

Summary

Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that begins or is first recognized during pregnancy. GDM is the most frequent complication in pregnancy and has been attracting growing attention. GDM increases the risk of numerous complications for both the mother (e.g. preeclampsia, preterm delivery, pregnancy hypertension) and her offspring (e.g. macrosomia and hypoglycemia) [2]. Women with GDM face an increased risk of cardiovascular diseases [4] and their offspring face a greater risk of developing obesity and abnormal glucose metabolism throughout their entire life [5]. Early diagnosis and treatment of GDM is crucial since the occurrence of hyperglycemia in pregnancy predisposes the developing fetus to poor metabolic health later in life [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call