Abstract

Lipid peroxidation is a common event during aluminum (Al) toxicity in plants, and it generates an array of aldehyde fragments. The present study investigated and compared the profile and physiological functions of lipid peroxide-derived aldehydes under Al stress in two wheat genotypes that differed in Al resistance. Under Al stress, the sensitive genotype Yangmai-5 suffered more severe plasma membrane damage and accumulated higher levels of aldehydes in roots than the Al-tolerant genotype Jian-864. The complementary use of high-resolution mass spectrometry and standard compounds allowed the identification and quantification of 13 kinds of short-chain aldehydes sourced from lipids in wheat roots. Among these aldehydes, acetaldehyde, isovaldehyde, valeraldehyde, (E)-2-hexenal (HE), heptaldehyde, and nonyl aldehyde were the predominant species. Moreover, it was found that HE in the sensitive genotype was over 2.63 times higher than that in the tolerant genotype after Al treatment. Elimination of aldehydes using carnosine rescued root growth inhibition by 19.59 and 11.63% in Jian-864 and Yangmai-5, respectively, and alleviated Al-induced membrane damage and protein oxidation. Exogenous aldehyde application further inhibited root elongation and exacerbated oxidative injury. The tolerant genotype Jian-864 showed elevated aldehyde detoxifying enzyme activity and transcript levels. These results suggest that lipid peroxide-derived short-chain aldehydes are involved in Al toxicity, and a higher aldehyde-detoxifying capacity may be responsible for Al tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.