Abstract
Polyunsaturated fatty acids (PUFAs) undergo lipid peroxidation and conversion into malondialdehyde (MDA). MDA reacts with acetaldehyde to form malondialdehyde-modified low-density lipoprotein (MDA-LDL). We studied unsettled issues in the association between MDA-LDL and the pathophysiology of ASD in 18 individuals with autism spectrum disorders (ASD) and eight age-matched controls. Social behaviors were assessed using the social responsiveness scale (SRS). To overcome the problem of using small samples, adaptive Lasso was used to enhance the interpretability accuracy, and a coefficient of variation was used for variable selections. Plasma levels of the MDA-LDL levels (91.00 ± 16.70 vs. 74.50 ± 18.88) and the DHA/arachidonic acid (ARA) ratio (0.57 ± 0.16 vs. 0.37 ± 0.07) were significantly higher and the superoxide dismutase levels were significantly lower in the ASD group than those in the control group. Total SRS scores in the ASD group were significantly higher than those in the control group. The unbeneficial DHA/ARA ratio induced ferroptosis via lipid peroxidation. Multiple linear regression analysis and adaptive Lasso revealed an association of the DHA/ARA ratio with total SRS scores and increased MDA-LDL levels in plasma, resulting in neuronal deficiencies. This unbeneficial DHA/ARA-ratio-induced ferroptosis contributes to autistic social behaviors and is available for therapy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.