Abstract

The effect of phospholipid peroxidation on the acylation of lysoPtdCho (lysophosphatidylcholine) by axolemma-enriched fraction prepared from rat brain stem was investigated. After two types of peroxidative treatments, the in vitro induction of malondialdehyde and conjugated dienes formation in axolemmal membranes correlated to a shift in the ratio of saturated/unsaturated fatty acids. By using an Fe2+ (20 microM)-ascorbate (0.25 mM) peroxidation system, the residual acyltransferase activity was 55% of the initial one. No change in Km value for either oleoyl-CoA or lysoPtdCho was found, whereas a loss of 24% in Vmax was observed. After 5 min preincubation with 150 mM t-BuOOH, 70% inactivation of the acylation reaction was observed. A near suppression of enzyme activity was reached with 400 mM. The apparent Km for oleoyl-CoA decreased sharply (from 6.6 microM in control preparations to 4.1 microM in t-BuOOH-treated membranes), indicating a 2-fold increase in the enzymatic affinity for this substrate. The apparent Km for lysoPtdCho increased markedly (from 1.56 microM in the control preparations to 5.88 microM in t-BuOOH-treated membranes) whereas a decrease of Vmax (from 1.65 to 0.80 nmol/min/mg protein) for the same substrate was observed. Significant enzyme inactivation (loss of 60% of initial activity) was seen when 10 mumol of photooxidized phospholipids were preincubated with axolemmal membranes. Significant dose-dependent enzyme inactivation was brought about by addition of 10-60 mumol of peroxidized PtdEtn/100 micrograms axolemmal protein. The percent enzyme inhibition by peroxidized PtdCho at equivalent amounts was lower than that by PtdEtn.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call