Abstract

Using the whole plant and model systems, we demonstrate that the aluminum ions (Al3+) stimulate phenolic-dependent lipid peroxidation. Lipid peroxidation in barley (Hordeum vulgare L. cv. Donor) roots was 30 % higher under AlCl3 treatment than without Al. Major decomposition product of lipid peroxidation was 4-hydroxynonenal (4-HNE) but not thiobarbituric acid reactive substances (TBARS), a widely used markers for lipid peroxidation. Similarly, AlCl3 stimulated lipid peroxidation of soybean liposomes in the presence of chlorogenic acid (CGA) and H2O2/horseradish peroxidase system which can oxidize phenolics. Al3+ was found to enhance lipid peroxidation induced by oxidized CGA. Intermediates of lignin biosynthesis in plants, including p-coumaric acid, ferulic acid, sinapic acid and coniferyl alcohol, also showed similar effects. These results suggest that Al3+ has a potential to induce oxidative stress in plants by stimulating the prooxidant nature of endogenous phenolic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.