Abstract

These studies describe the influence of membrane fatty acid composition on peroxidation processes in rat-liver S9 fractions. Lipid peroxidation may be expected to affect enzyme activity and cofactos of importance for the performance of the Salmonella Mutagenicity Test, as well as to contribute to the formation of chemically reactive degradation products that are mutagenic. Lipid peroxidation products were measured as derivatives of 2-thiobarbituric acid (TBA). The amount of TBA-reactive compounds (TBA-C), formed during incubation of S9 fractions from rats fed a diet containing sunflower-seed oil, was 8 times higher than that produced in S9 fractions prepared from rats fed diets containing oil or hydrogenated lard as their only sources of fat. S9 fractions from livers of Aroclor 1254 treated rats showed a marked increase in peroxidation yields for all 3 dietary groups investigated as compared to S9 fractions from non-induced animals. The coconut oil and hydrogenated lard dietary groups showed a 13-fold increase in the yield of TBA-reactive material, while a 2-fold increase was found for the sunflower-seed oil group. The variations in the glutathione (GSH) levels and the degradation of unsaturated fatty acids were also studied in response to Aroclor 1254 treatment, fattcy acid composition of the diets and incubation at 37°C. Pronounced variations in the GSH levels were observed in response to Aroclor 1254 treatment and incubation conditions. A positive correlation between production of TBA-reactive material and degradation of unsaturated fatty acids was verified for S9 fractions from the coconut oil and hydrogenated lard dietary group. Furthermore, the effect of Fe 2+ on lipid peroxidation was studied in all 3 dietary groups. The rate of lipid peroxidation was increased in all groups but only the coconut oil and hydrogenated lard dietary groups showed increased total yields of TBA-C upon administration of Aroclor 1254 to rats. Lipid peroxidation processes cause chemical alterations in liver homogenates. Therefore, these effects ought to be considered both in the preparation and in the use of the S9 fraction in different test systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.