Abstract
The hypothesis is presented that lipid peroxidation is responsible for the damage in skeletal and cardiac muscle of chronic alcoholic subjects. The enhanced lipid peroxidation is caused by the accumulation of oxygen radicals. Both excessive production and decreased disposal of oxygen radicals can arise from the acetaldehyde formed in the oxidation of ethanol. Although acetaldehyde from hepatic sources may contribute, muscle itself can generate significant amounts of acetaldehyde through the action of muscle catalase. The effects of alcohol on other tissues, and its known longterm effects on membranes lend support to this hypothesis. The ultrastructural features of the alcoholic myopathies provide further support. The resemblance between vitamin E-deficiency myopathy and the alcoholic myopathies is strong additional evidence in favor of this hypothesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.