Abstract

Oxidative stress conditions lead to enzymatic and non-enzymatic unsaturated fatty acid-initiated lipid peroxidation reactions. One exacerbating product is lipid hydroperoxide (LOOH) which itself promotes formation of several additional peroxyl radicals. Helicobacter pylori mutant strains with disruptions in genes encoding the peroxiredoxins, alkyl hydroperoxide reductase ( ahpC) and the bacterioferritin comigratory protein ( bcp), were more sensitive than the parent strain to oxidizing agents. These mutant strains were particularly sensitive, compared to the wild type, to killing by the unsaturated fatty acid linolenic acid but were not sensitive to the saturated fatty acid palmitic acid. A double mutant strain ( ahpC bcp) accumulated more than 3-fold more lipid peroxides than the parent strain, indicating these peroxiredoxins together play a role in detoxifying lipid peroxides. The level of free iron accumulation, a signature of oxidative stress damage, was correlated specifically to organic peroxide-mediated stress by both in vivo and in vitro approaches. Free iron accumulation and concomitant destruction of [Fe–S] cluster-containing proteins (hydrogenase and aconitase) was correlated to damage mediated by exogenous t-butyl peroxide, or separately to intracellular accumulation of lipid peroxides in mutant strains. A major macromolecular target of accumulating lipid peroxides in H. pylori is DNA, as mutant analysis approaches combined with quantitative DNA fragmentation studies and specific DNA damage assessment (i.e. 8-oxoguanine formation) were used to demonstrate that such damage was especially associated with ahpC and ahpC bcp strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.