Abstract

Generation of reactive oxygen species (ROS) is associated with dysregulation of antioxidant defense mechanisms and incidence of human diseases. The specific aim of this study was to investigate the lipid oxidation and antioxidant activity of aqueous extract of Rheum officinale Baillon rhizome in order to evaluate its potential as a future novel natural antioxidant resource and a functional ingredient in food and pharmaceutical formations. Total phenolic and flavonoid contents of Rheum rhizome extract were dose dependently increased. Consistent with this, radical scavenging activities of Rheum rhizome extract as determined by 2,2-diphenyl-1-picrylhydrazyl assay and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity were significantly elevated as the concentration increased. In addition, the treatment of aqueous Rheum rhizome extract significantly increased ferric reducing and copper chelating activities. According to results of thiobarbituric acid reactive substance analysis, Rheum rhizome extract significantly delayed lipid oxidation. Preincubation with Rheum rhizome extract significantly inhibited tert-butyl hydroperoxide- (t-BHP-) induced ROS generation. Moreover, superoxide anion production was significantly lower in Rheum rhizome extract-treated RAW264.7 macrophage cells than t-BHP-incubated cells (p<0.05). These findings suggest that Rheum officinale Baillon rhizome extract has a potential as an excellent natural antioxidant agent.

Highlights

  • Oxidative stress, which is an imbalance between the production of deleterious reactive oxygen species (ROS) and existing antioxidant defense system, plays a pivotal pathophysiological role in the development of liver disease, cancer, aging, autoimmune disorders, and cardiovascular and neurodegenerative diseases [1,2,3,4,5]

  • Recent accumulating evidence shows that several species of the Rheum genus such as Rheum emodi, Rheum undulatum L., Rhizoma Rhei, Rheum ribes, Rheum palmatum L., and Rheum rhaponticum have antiallergic, antibacterial, antioxidant, anticancer, antiangiogenesis, and anti-in ammation properties [11,12,13,14,15,16,17,18,19,20]

  • Polyphenolic compounds including flavonoids are known as powerful antioxidants due to their hydroxyl groups and radical scavenging activities. ese compounds may contribute directly to antioxidant capacity, having protective functions against oxidative damage and health benefits [30,31,32,33]

Read more

Summary

Introduction

Oxidative stress, which is an imbalance between the production of deleterious reactive oxygen species (ROS) and existing antioxidant defense system, plays a pivotal pathophysiological role in the development of liver disease, cancer, aging, autoimmune disorders, and cardiovascular and neurodegenerative diseases [1,2,3,4,5]. Overproduction of ROS such as hydroxyl radical (OH·), superoxide radical (O2–·), hydrogen peroxide (H2O2), and nitric monoxide (NO·) readily attacks the polyunsaturated fatty acids in the plasma membrane, resulting in the oxidative degradation of lipids [6, 7]. ROS production and lipid oxidation for the improvement of quality and nutrition of foods in the agriculture and food industry. Recent accumulating evidence shows that several species of the Rheum genus such as Rheum emodi, Rheum undulatum L., Rhizoma Rhei, Rheum ribes, Rheum palmatum L., and Rheum rhaponticum have antiallergic, antibacterial, antioxidant, anticancer, antiangiogenesis, and anti-in ammation properties [11,12,13,14,15,16,17,18,19,20].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call