Abstract

Lipid particle size effects on water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI)/beeswax (BW) emulsion films were investigated. Emulsion films containing 20 and 60% BW (dry basis) and mean lipid particle sizes ranging from 0.5 to 2.0 microm were prepared. BW particle size effects on WVP and mechanical properties were observed only in films containing 60% BW. WVP of these films decreased as lipid particle size decreased. As drying temperature increased, film WVPs decreased significantly. Meanwhile, tensile strength and elongation increased as BW particle size decreased. However, for 20% BW emulsion films, properties were not affected by lipid particle size. Results suggest that increased protein-lipid interactions at the BW particle interfaces, as particle size decreased and resulting interfacial area increased, result in stronger films with lower WVPs. Observing this effect depends on a large lipid content within the protein matrix. At low lipid content, the effect of interactions at the protein-lipid interfaces is not observed, due to the presence of large protein-matrix regions of the film without lipid, which are not influenced by protein-lipid interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call