Abstract

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and one therapeutic approach is to target both the AMPK and autophagy pathways in order to synergistically promote programmed cell death. Here, a series of amphiphilic, lipid-modified cell-penetrating peptides were synthesized and allowed to self-assemble into micelles loaded with the AMPK activator narciclasine (Narc) and short interfering RNA targeting the unc-51-like kinase 1 (siULK1). The size of these micelles, their efficiency of transfection into cells, and their ability to release drug or siRNA cargo in vitro were pH-sensitive, such that drug release was facilitated in the acidic microenvironment of the tumor. Transfecting the micelles into HCC cells significantly inhibited protective autophagy within tumor cells, and delivering the micelles into mice carrying HCC xenografts induced apoptosis, slowed tumor growth, and inhibited autophagy. Our results indicate that co-delivering Narc and siULK1 in biocompatible micelles can safely inhibit tumor growth and protective autophagy, justifying further studies into this promising therapeutic approach against HCC. Statement of SignificanceWe have focused on the targeted therapy of HCC via synergistically inhibiting the autophagy and inducing apoptosis. The lipid-modified cell-penetrating peptide can not only aggregate into micelles to load natural product narciclasine and ULK1 siRNA simultaneously, but also facilitate uptake and endosome escape with a pH-sensitive manner in HepG2 cells. HepG2 cell treated with siULK1-M-Narc has increased apoptotic levels and declined autophagy via the targeted regulation of AMPK-ULK1 signaling axis. The in vivo studies have confirmed that siULK1-M-Narc efficiently reduce the growth of tumor on HCC xenograft models with good safety. Thus, we suppose the lipid-modified cell-penetrating peptide has good application prospects in the targeted combinational therapy of HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.