Abstract

The size increase of small unilamellar vesicles composed of binary mixtures either of saturated fatty acid phosphatidylcholines with different chain lengths or of saturated and unsaturated phosphatidylcholines was found to depend on the miscibility properties of the lipid components. No size increase was detected in vesicles formed by two miscible phosphatidylcholines. In vesicles composed of two lipids which are partially immiscible in the gel state, a size increase was observed at temperatures which mainly overlapped the range of temperatures of the lipid phase transition. The rate of size increase of vesicles composed of two lipids which are immiscible in the gel state was faster than that of vesicles composed of two partially immiscible phosphatidylcholines, and the process occurred not only at the temperature ranges of the lipid phase transition, but also when both lipids were in the gel state. The vesicle size increase process occurred without the mixing of the internal content of the vesicles. A model is proposed in which the presence of ‘fractures’ between membrane regions of different fluidity and/or lipid composition controls the rate of this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.