Abstract

Soil salinity is a major conlinet limiting sustainable agricultural development in peach tree industry. In this study, lipid metabolomic pathway analysis indicated that phosphatidic acid is essential for root resistance to salt stress in peach seedlings. Through functional annotation analysis of differentially expressed genes in transcriptomics, we found that MAPK signaling pathway is closely related to peach tree resistance to salt stress, wherein PpMPK6 expression is significantly upregulated. Under salt conditions, the OE-PpMPK6 Arabidopsis thaliana (L.) Heynh. line showed higher resistance to salt stress than WT and KO-AtMPK6 lines. Furthermore, we found that the Na+ content in OE-PpMPK6 roots was significantly lower than that in WT and KO-AtMPK6 roots, indicating that phosphatidic acid combined with PpMPK6 activated the SOS1 (salt-overly-sensitive 1) protein to enhance Na+ efflux, thus alleviating the damage caused by NaCl in roots; these findings provide insight into the salt stress-associated transcriptional regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.