Abstract
In pigs, a paternally (pat) imprinted mutation in the IGF-II gene is associated with increased muscle mass and decreased backfat thickness. The aim of this study was to determine whether this mutation influenced cellular, biochemical and metabolic features of skeletal muscle and adipose tissue. Muscle ( trapezius) and subcutaneous adipose tissue (SCAT) were collected from pigs (106 kg) carrying (Qpat, n = 6) or not carrying (qpat, n = 7) the mutation. Adipocytes were isolated from those tissues by collagenase treatment. Lipid content and activity of lipogenic enzymes were determined using standard assays. Gene expression levels were determined by real-time PCR. Levels of IGF-II mRNA were higher ( P < 0.01) in muscle of Qpat than in that of qpat pigs, but they did not differ significantly between the two groups in SCAT. Whereas levels of IGF-I mRNA in muscle were similar in both groups, they were higher ( P < 0.05) in SCAT of Qpat pigs than in that of qpat pigs. Muscle lipid content and intramuscular adipocyte diameters were not influenced significantly by the IGF-II genotype. In SCAT, the reduction of backfat thickness in Qpat pigs compared with qpat pigs was associated with lower ( P < 0.05) lipid content and smaller ( P < 0.05) adipocytes, with no significant genotype-effects on expressions and/or activities of lipogenic enzymes. In summary, our results suggest that the IGF-II mutation altered body composition in pigs by favoring myofiber hypertrophy and repressing adipose cell development in SCAT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.