Abstract

This study compared cows that consistently produce milk with small (volume-weighted mean diameter of 2.92-3.83 µm, with an average diameter of 3.29 µm) or large (volume-weighted mean diameter of 4.58-5.67 µm, with an average diameter of 4.92 µm) milk fat globule (MFG) size distributions in terms of the fatty acid (FA) composition of the MFG core. Selected cows fell into the respective size group over at least 3 independent measurements, including an observation period before the experiment. Further selection criteria were similar milk production traits between cows (milk yield, fat yield, fat/protein ratio) and established lactation (>50 d in milk). However, the selected groups differed in parity (parity 1-3 and 3-5 in the small and large MFG groups, respectively), and the small MFG group was an average of 25 d in milk later in their lactation period. All cows were under the same nutritional management and environmental conditions. Here, we show that cows with the small or large MFG phenotype differed in their lipid metabolism in terms of the FA composition of the MFG core. Our results indicate that cows with the small MFG phenotype produced milk with higher concentrations of unsaturated FA despite being fed the same diet. We suggest that this characteristic of the small MFG phenotype is the result of increased uptake of long-chain FA from the blood circulation. A relationship between the degree of unsaturation and MFG size was also identified in preliminary studies across other species-namely, camels, sheep, and goats. These findings show the potential for on-farm selection of cows (and potentially other dairy species) based on MFG size to produce milk with improved nutrient composition. This could lead to purpose-specific separation of milk based on MFG size and FA profile, both known to alter the technological properties of milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call