Abstract

Epithelial cells which line mucosal surfaces are the first line of defense against bacterial invasion and infection. Recent studies have also indicated that epithelial cells contribute significantly to the orchestration of ongoing inflammatory processes. Here, we demonstrate that human epithelial cells express bactericidal/permeability-increasing protein (BPI), an antibacterial and endotoxin-neutralizing molecule previously associated with neutrophils. Moreover, we demonstrate that such BPI expression is transcriptionally regulated by analogs of endogenously occurring anti-inflammatory eicosanoids (aspirin-triggered lipoxins, ATLa). Initial studies to verify microarray analysis revealed that epithelial cells of wide origin (oral, pulmonary, and gastrointestinal mucosa) express BPI and each is similarly regulated by aspirin-triggered lipoxins. Studies aimed at localization of BPI revealed that such expression occurs on the cell surface of cultured epithelial cell lines and dominantly localizes to epithelia in human mucosal tissue. Functional studies employing a BPI-neutralizing anti-serum revealed that surface BPI blocks endotoxin-mediated signaling in epithelia and kills Salmonella typhimurium. These studies identify a previously unappreciated "molecular shield" for protection of mucosal surfaces against Gram-negative bacteria and their endotoxin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.