Abstract

The high-resolution crystal structure of an engineered human beta2-adrenergic receptor has recently been resolved, suggesting a molecular mechanism by which cholesterol may mediate receptor dimerization. Here, we present a critical examination of new structural and functional insights derived from unprecedented preliminary homology modeling of cannabinoid receptors, obtained using the crystal structure of beta2-adrenergic receptor as a template. The structural comparison between the two cannabinoid receptor subtypes and the beta2-adrenergic receptor may be of particular interest, by providing important clues for the elucidation of the structural determinants involved in cholesterol binding. In addition, the implications of G protein coupled receptor dimerization, as well as the role of cholesterol in this process, are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.