Abstract

Two extended pulsed feeding experiments, following the spring bloom period, investigated lipid retention in the prominent Bering Sea euphausiid (krill) Thysanoessa raschii. These experiments occurred during late spring and early summer of 2010. Concurrent taxonomic analysis of the natural algal community allowed prey type to be linked to lipid composition of the natural communities. In late spring, experimental periods of feeding followed by starvation showed an overall decrease in total lipid for T. raschii. In early summer, no consistent trend was observed for total lipid with the visible presence of storage lipid in some animals. Polar lipids, as phospholipids, were the dominant krill lipid class in both experiments constituting ≥88% of total lipid, and triacylglycerols reached a maximum of 5% of total lipid. The sterols cholesterol and brassicasterol+desmosterol comprised 98–99% of total sterol abundances in T. raschii throughout both experiments, even after feeding periods when alternative sterols (i.e. the algal sterol 24-methylenecholesterol) accounted for up to 39% of sterols in potential food particles. Cholesterol abundance and concentration increased during both incubations, likely due to the metabolism of dietary sterols. Major fatty acids observed in krill included C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), and C22:6(n-3) with the diatom-attributed C16:1(n-7) decreasing in abundance and concentration during starvation. Low concentrations of the dinoflagellate-derived sterol and a novel C28:8 PUFA, typically found in dinoflagellates and prymnesiophytes, indicated predation on protozooplankton in early summer when diatom abundances were low. The stability of lipid distributions over periods of starvation and intermittent feeding suggest that fatty acid and sterol biomarkers present in this polar euphausiid principally reflect long-term diet history rather than short-term feeding episodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.