Abstract

A drop of lipid lateral self-diffusion coefficient at the liquid-gel phase transition in lipid membranes is calculated. So far this drop was missing theoretical description. Our microscopic model captures so-called subdiffusion regime, which takes place on 1 ps-100 ns timescale and reveals a jump of self-diffusion coefficient. Calculation of the jump is based on our recent study of liquid-gel phase transition. Subdiffusive regime is described within the free volume theory. Calculated values of self-diffusion coefficient are in agreement with quasielastic neutron scattering measurements. Self-diffusion coefficient is found to be composed of two factors: one is related to an area per lipid change at the phase transition, and the other one is due to an order of magnitude change in the stiffness of entropic repulsive potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.