Abstract
A model recently used to study lipid-protein interactions in one-component lipid bilayers (Sperotto and Mouritsen, 1991 a, b) has been extended in order to include two different lipid species characterized by different acyl-chain lengths. The model, which is a statistical mechanical lattice model, assumes that hydrophobic matching between lipid-bilayer hydrophobic thickness and hydrophobic length of the integral protein is an important aspect of the interactions. By means of Monte Carlo simulation techniques, the lateral distribution of the two lipid species near the hydrophobic protein-lipid interface in the fluid phase of the bilayer has been derived. The results indicate that there is a very structured and heterogeneous distribution of the two lipid species near the protein and that the protein-lipid interface is enriched in one of the lipid species. Out of equilibrium, the concentration profiles of the two lipid species away from the protein interface are found to develop a long-range oscillatory behavior. Such dynamic membrane heterogeneity may be of relevance for determining the physical factors involved in lipid specificity of protein function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.