Abstract
BackgroundNon-alcoholic fatty liver disease (NAFLD) is now the most common form of chronic liver disease in the world, and it’s linked to a slew of other risk factors including diabetes, obesity, dysbiosis and inflammatory bowel disease. More than 30 years ago, a patient was diagnosed with fatty liver with excessive fat accumulation in hepatocytes, a disorder known as hepatosteatosis. There will be no promising therapeutic medicines available from 1980 to 2021 which can reverse the fatty liver to normal liver state. In this review, we highlighted on lipid droplet associated protein which play a major role in accumulation of fat in liver cells and how these cellular pathway could be a promising therapeutic approach to treat the fatty liver disease.Main bodyOver the last few decades, Western countries follow a high-fat diet and change their lifestyle pattern due to certain metabolic disorders prevalence rate is very high all over the world. NAFLD is a major health issue and burden globally nowadays. Researchers are trying to find out the potential therapeutic target to combat the disease. The exact pathophysiology of the disease is still unclear. In the present decades. There is no Food and Drug Administration approved drugs are available to reverse the chronic condition of the disease. Based on literature survey, lipid droplets and their associated protein like perilipins play an eminent role in body fat regulation. In this review, we explain all types of perilipins such as perilipin1-5 (PLIN1-5) and their role in the pathogenesis of fatty liver which will be helpful to find the novel pharmacological target to treat the fatty liver.ConclusionIn this review, majorly focussed on how fat is get deposited into hepatocytes follow the cellular signalling involved during lipid droplet biogenesis and leads to NAFLD. However, up to date still there mechanism of action is unclear. In this review, we hypothesized that lipid droplets associated proteins like perilipins could be better pharmacological target to reverse the chronic stage of fatty liver disease and how these lipid droplets associated proteins hide a clue to maintain the normal lipid homeostasis in the human body.
Highlights
Worldwide around one-fourth of the total population are affected by Non-alcoholic fatty liver disease (NAFLD) a disease which indicates major health problems [2, 3]
NAFLD is characterized by excessive fat accumulation in hepatocytes but to define this disease the fat is accumulated in the hepatic system which covers more than 5% area in the histologic biopsy of the liver is known as a state of non-alcoholic fatty liver or simple steatosis [4, 5]
In the case of children, Mallory’s hyaline is absent in NAFLD state [9]. These all histopathological features are a major hallmark for the NAFLD, and its further progression leads to the non-alcoholic steatohepatitis (NASH) and continued progress in disease characterization further leading to cirrhosis condition or causes liver cancer
Summary
Majorly focussed on how fat is get deposited into hepatocytes follow the cellular signalling involved during lipid droplet biogenesis and leads to NAFLD. We hypothesized that lipid droplets associated proteins like perilipins could be better pharmacological target to reverse the chronic stage of fatty liver disease and how these lipid droplets associated proteins hide a clue to maintain the normal lipid homeostasis in the human body
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.