Abstract

BackgroundHepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options.ResultsIn this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size.ConclusionThese results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids.

Highlights

  • Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options

  • We demonstrated that Ac-915 and Ac-2010, novel amino-trifluoro-phtalimide analogs with novel substitutions interfere with lipid droplets and the endoplasmic reticulum (ER), and induce intracellular reactive oxygen species (ROS) at lower concentrations than the previously described compounds

  • The novel compounds described here, interact with lipid dropletassociated proteins, protein disulfide isomerase (PDI) and heat-shock proteins (HSPs) that are involved in chaperone functions

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options. Ac-915 and Ac-2010 (4amino-substituted 2,6-diisopropylphenyl- -5,6,7-trifluoroisoindole-1,3-diones) were synthesized from starting tetrafluoro thalidomide based on our previously published synthetic approach [4]. Both molecules possessed a strong blue fluorescence, like the previously synthesized ones [4], and in the present study their intracellular and tissue distribution were detected based on their fluorescent characteristics. We demonstrated that Ac-915 and Ac-2010, novel amino-trifluoro-phtalimide analogs with novel substitutions interfere with lipid droplets and the endoplasmic reticulum (ER), and induce intracellular reactive oxygen species (ROS) at lower concentrations than the previously described compounds. We investigated the possible PDI inhibition of the novel analogs by using enzymatic assays

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call