Abstract

Membrane fluidity properties of placental microvillus membrane vesicles (MVV) were determined from fluorescence anisotropy (r), dynamic depolarization, and lifetime heterogeneity studies of diphenylhexatriene (DPH), trimethylamino-DPH (TMA-DPH), and cis- and trans-parinaric acids (c-PnA and t-PnA). Plots of r against temperature for DPH and TMA-DPH in MVV had slope discontinuities at 26 degrees C (Tc, transition temperature); however, analysis of r in terms of probe rotational rate (R), limiting anisotropy (r infinity), and lifetime (tau) revealed that DPH reported a phase transition because of changes in r infinity, whereas the phase transition observed by TMA-DPH occurred primarily because of changes in R. Heterogeneity analysis using phase and modulation lifetimes at three frequencies showed that DPH and TMA-DPH lifetimes were homogeneous in MVV. Both long (greater than 25 ns) and short (less than 6 ns) lifetime components were detected for c-PnA and t-PnA in MVV, corresponding to the probes in solid and fluid lipid phases. The fractional amplitude of the long lifetimes (solid phase) decreased from 0.86 to 0.12 with increasing temperature (5-55 degrees C) as the membrane passed through the phase transition, with 50% of the change occurring at 27 degrees C (c-PnA) or 33 degrees C (t-PnA). The activation energies for alkaline phosphatase, aminopeptidase M, and sodium-proton antiporter activities all showed discontinuities in the temperature range 27-31 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.