Abstract

Lipid uptake was analyzed via gravimetric measurements in a biocompatible poly(styrene-block-isobutylene-block-styrene) (SIBS) copolymer. Absorption followed Fickian diffusion behavior very closely, although some deviation was noticed once saturation was reached. Diffusion parameters of three different SIBS formulations were calculated and used to predict the behavior of a fourth type based on molecular weight and relative polystyrene content. SIBS with lower polystyrene content and molecular weight showed lower physical stability and developed surface cracks that propagated with exposure to the lipid medium. Saturation lipid content varied from 45% to 63% by weight and was inversely related to polystyrene content, suggesting most of the plasticization is occurring in the isobutylene phase of SIBS. Moreover, swelling of specimens was monitored throughout the immersion in the lipid medium and ranged from 32% to 58%. Swelling in formulations with lower hard phase (polystyrene) was significantly higher than the swelling in SIBS with higher hard phase content. This is consistent with lipid-induced plasticization occurring in the soft (polyisobutylene) segments, relaxing the polymer network and leading to increased swelling and lipid uptake. The biocompatibility and tailorability of SIBS through control of hard/soft phase ratio offer significant advantages for in vivo applications. However, the lipophilic nature of the material and the associated degradation may render the polymer unusable in certain applications. The predictive model of lipid uptake introduced here will allow more accurate evaluation of lipid susceptibility during the preliminary design phase of SIBS-based in vivo structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call