Abstract
The formation of cholesterol and sphingolipids into specialized liquid-ordered membrane microdomains (rafts) has been proposed to function in the intracellular sorting and transport of proteins and lipids. Defined by biochemical criteria, rafts resist solubilization in nonionic detergents, enabling them to be isolated as detergent-resistant membranes (DRM). In this study, we characterized the lipid composition of DRM from a cell model of the sphingolipid storage disorder, Gaucher disease, in which the catabolism of the sphingolipid glucosylceramide (GC) is impaired. In this cell model, we showed that GC accumulated primarily in the DRM, with smaller secondary increases in ceramide, dihexosylceramide, trihexosylceramide, and phosphatidylglycerol. This suggested that not only was lipid metabolism altered as a consequence of the cells' inability to degrade GC, but this affected the DRM rather than other regions of the membrane. This increase in lipids in the DRM may be responsible for the altered lipid and protein sorting seen in Gaucher disease. Analysis of individual lipid species revealed preservation of the shorter and fully saturated fatty acid species in the DRM, suggesting that the highly ordered and tightly packed nature of the DRM is maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Lipid Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.