Abstract

There are indications from freeze-fracture experiments that subclasses of rabbit thymocytes show different mobilities of plasma membrane components. Consequently, one would expect differences in the fluidity of the plasma membrane. For this reason, rabbit thymocytes were separated on a Ficoll/Metrizoate gradient yielding three subclasses representing various levels of cell differentiation. These thymocyte subclasses did not show any significant differences in the degree of fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene. The fluorescence polarization of the plasma membrane may be overshadowed by the contribution of all cellular lipids due to penetration of the fluorescent probe into the cell. Therefore, plasma membranes were isolated from rabbit thymocytes using a cell-disrupting pump, differential centrifugation, and sucrose density gradient centrifugation. As shown by biochemical and electron microscopical analyses, plasma membranes with a high degree of purity were obtained. As expected the plasma membrane fractions showed a higher microviscosity than the other subcellular fractions. This was attributed to a higher cholesterol to phospholipid molar ratio and a higher degree of saturation of phospholipid fatty acid chains. Subsequently, the microviscosity was measured of plasma membrane preparations obtained from two main subclasses of thymocytes representing mature and immature lymphocytes. The immature thymocytes yielded two plasma membrane fractions with higher microviscosity than the mature cells. These finding is in line with earlier observed differences in the glycerol-induced clustering of intramembranous particles. Furthermore, the results of this study support the view that the fluorescence polarization technique applied to whole cells does not exclusively monitor the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.