Abstract

The development of smart drug delivery nanocarriers for tumor-targeted delivery and controllable release of therapeutic agents is appealing to achieve effective cancer chemotherapy. We herein use CaCO3 nanoparticles as the core to load doxorubicin (DOX) and direct the assembly of amphiphilic oxaliplatin prodrugs (Pt(IV)) in the presence of other commercial lipids. The obtained DOX-Pt(IV)-CaCO3-PEG with excellent physiological stability exhibits instant pH-responsive degradation, thus enabling efficient pH-dependent release of DOX. Via detailed pharmacokinetic study, it is shown that DOX-Pt(IV)-CaCO3-PEG shows significantly improved pharmacokinetic behaviors compared to these free drugs, featured in prolonged blood circulation time and superior tumor homing efficacy. Resultantly, treatment with systemic administration of DOX-Pt(IV)-CaCO3-PEG was the most effective in suppressing the growth of tumors in Balb/c mice. This study highlights that our liposomal CaCO3 is a robust and biocompatible platform for preparing pH-responsive drug delivery systems, due to its multifaceted drug loading capacity, and thus is promising for potential clinical translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.