Abstract

Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

Highlights

  • Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures

  • A synthetic zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) is often used alone or in combination with other lipids to produce a planar mica-supported lipid bilayer (SLB), which is a popular model of biological membranes[29,30]

  • A mica-supported zwitterionic DOPC lipid bilayer is used as a substrate to allow electrostatic adhesion and self-organization/ reorganization of DNA origami structures in the conventional buffer solution optimized for the preparation of origami structures

Read more

Summary

Introduction

Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. A synthetic zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) is often used alone or in combination with other lipids to produce a planar mica-supported lipid bilayer (SLB), which is a popular model of biological membranes[29,30] Because of their surface flatness, SLBs can be good candidates as substrates both for surface-assisted assembly[31,32,33] and for atomic force microscopy (AFM) imaging[34,35]. A mica-supported zwitterionic DOPC lipid bilayer is used as a substrate to allow electrostatic adhesion and self-organization/ reorganization of DNA origami structures in the conventional buffer solution optimized for the preparation of origami structures. We demonstrate that prefolded origami units can be readily deposited onto the SLB and assemble into ordered lattices on it even in the absence of any buffer exchange processes

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.