Abstract

Alzheimer's disease (AD) is the most common form of dementia and is expected to greatly rise in future, making it a major worldwide health concern with severe impacts on individuals and society. Despite advancements in understanding the cellular and molecular aspects of Alzheimer's disease (AD) in recent decades, it still poses a significant problem. A major problem is accurately delivering drugs to diseased neurons while minimising effects on healthy neurons. This difficulty is worsened by the low water solubility of anti-Alzheimer's disease medicines and the blood-brain barrier (BBB) that hinders the entry of central nervous system pharmaceuticals that are highly lipophilic. The focus of this article is on nanocarriers that are lipid-based. This is one of the more widely accepted methods of treating Alzheimer's disease, as it increases therapeutic efficacy while decreasing side effects related to cooperated neurological disorder payload. Searched many databases for papers published under the title (including PubMed, Elsevier, and Google Scholar). Nano Lipid Carriers (NLCs) are recognized for their ability to target the brain effectively due to their lipid-loving properties and compatibility with living tissues. They improve the absorption of drugs in the brain while decreasing the accumulation of drugs in unintended organs. This work emphasises the importance of nano lipid carriers, which are lipophilic and biocompatible and have demonstrated exceptional targeting efficiency, making them an ideal carrier system for delivering medications to the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call