Abstract

We evaluated a new approach to AIDS therapy by using combinations of oligodeoxynucleotides (ODNs), delivered with a lipid-based carrier system, that target different HIV viral genome sites. We identified some of the factors that seem to influence the effectiveness of a combination strategy in cell cultures including ODN concentrations, type of infection (acute vs chronic), backbone modification of the ODN, and the number of sequences. When delivered by the DLS carrier system, some advantages of using a combination of ODNs over treatment with only one ODN could be observed in acute infection assays but not in the chronic infection model. These results suggest that in the acute infection model, the 3 different antisense ODNs in the "cocktail" might block an early step of virus replication by combined inhibitory effects. Various combinations of phosphorothioate-modified (PS) and unmodified oligonucleotides delivered by the DLS system were compared for their antiviral activity in a long-term acute assay using HIV-1 (IIIB strain)-infected MOLT-3 cells. The most effective combination had 3 phosphorothioate antisense ODNs: Srev, SDIS, and SPac (>99% inhibition at 100 pM). However, the additive effect determined when using ODN combinations was rather low, revealing the high level of nonsequence specificity in HIV-1 cell culture models. Data illustrated the high sequence nonspecific activity of ODNs, especially when comparing activity of antisense ODNs with activity of random control sequence ODNs. The latter exhibited an inhibitory effect similar to that of antisense ODNs under our experimental conditions. Nevertheless, we demonstrated that it is possible to achieve high anti-HIV activity by using, in combination, picomolar range concentrations of antisense oligonucleotides complexed to a lipid-based carrier system such as the DLS system, without increasing cell toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.