Abstract

Abstract: A comprehensive study was carried out to clarify the chemical compositions of spinal cord, cord myelin, and myelin subfractions of multiple sclerosis (MS). The protein compositions of normal‐appearing cerebral white matter and cerebral plaque and periplaque tissues were also analyzed for comparison. MS whole cord samples were found to contain higher amounts of water compared with normal samples. The total lipid contents were below normal. Among the individual lipids, cholesterol content remained unchanged, whereas cholesteryl esters appeared increased in MS cords. The acidic phospholipid concentrations were found to be lower than normal. Glycolipids, such as cerebrosides GM4, GM1, and GD1b, which are abundant in myelin, were all decreased. However, the concentrations of GM3 and GD3, which are more characteristic of reactive astrocytes, were highly elevated. The total protein content of MS cord samples was decreased, and the decrease was attributable to the loss of myelin proteins as evidenced by the low recovery of myelin. The concentrations of myelin‐specific proteins, such as proteolipid protein and myelin basic protein, were significantly reduced. Other changes in the protein compositions included the accretion of two low molecular weight proteins of approximately 11,000 and 12,000, and the appearance of a periodic acid‐Schiff‐positive protein with the same electrophoretic mobility as the P0 protein. Analysis of the isolated myelin indicated that it had a grossly normal protein composition. However, the two low molecular weight proteins and the P0 protein appeared to be enriched in an upper‐phase cord subtraction. We attribute the appearance of the two low molecular weight proteins to the breakdown of proteolipid protein and/or myelin basic protein as a result of demyelination, and the appearance of P0 to the involvement of PNS myelin. The latter finding provides the first biochemical evidence that in MS cord, remyelination can be achieved in part by invading Schwann cells and/or by the small number of Schwann cells that may be present in the cord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call