Abstract
The differentiation between solitary metastasis (MET) and glioblastoma (GBM) is difficult using only magnetic resonance imaging techniques. Magnetic resonance spectroscopy (MRS) lipid signal indicates cellular necrosis both in GBMs and METs. The purpose of this prospective study was to determine whether a class of lipids and/or macromolecules (MMs), able to efficiently discriminate between these two types of lesions, exists. Forty-one patients with solitary brain tumor (23 GBMs and 18 METs) underwent magnetic resonance imaging and single-voxel MRS. Short-echo time point resolved spectroscopy sequence acquisition with water suppression technique was used. Spectra were analyzed using LCModel. Absolute quantification was performed with "water-scaling" procedure. The analysis was focused on sums of lipid and macromolecular (LM) components at 0.9 and 1.3 ppm. The LM13 absolute concentration was statistically different (P < 0.0001) between GBMs and METs. With a cutoff of 81 mM in LM13 absolute concentration, METs and GBMs can be distinguished with a 78% of specificity and an 81% of sensitivity. The presence of the MM12 peak, related to the fucose II complex, in tumors harboring a K-ras gene mutation has been investigated. We exploited the performance of a clinically easily implementable method, such as short-echo time single-voxel MRS, for the differentiation between brain metastasis and primary brain tumors. The study showed that MRS absolute lipid and macromolecular signals could be helpful in differentiating GBM from metastasis. LM13 class was found to be a discriminant parameter with an accuracy of 85%. Detection of the MM12-fucose peak may also have a role in understanding molecular biology of brain metastasis and should be further investigated to address specific metabolic phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.