Abstract

We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80%) than non-oleaginous strains (approx. 90%). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call