Abstract

The formation of hydrolysis of retinyl esters are key processes in the metabolism of the fat-soluble micronutrient vitamin A. Long-chain acyl esters of retinol are the major chemical form of vitamin A (retinoid) stored in the body. Retinyl esters are found in a variety of tissues and cell types, but most of the total body retinoid is accounted for by the retinyl esters stored in the liver. Thus, these esters represent the major endogenous source of retinoid that can be delivered to peripheral tissues for conversion to biologically active forms. This review summarizes current knowledge about the identity, function, and regulation of the hepatic enzymes potentially involved in catalyzing the hydrolysis of retinyl esters. These enzymes include several known and characterized lipases and carboxylesterases. Although there is accumulating evidence that these enzymes function as retinyl ester hydrolases in vitro, it is not clear which play important physiological roles in hepatic retinyl ester metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call