Abstract

Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni-and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][PF6]) and bis[(trifluoromethylsulfonyl) imide] ([BMIM] [Tf2N]) were employed as reaction media for the transesterification ofn-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor, The conversion yield was increased around 10% in a water/[BMIM][Tf2N], bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][Tf2N] system. Partion coefficients of the substrates in the water/[BMIM][Tf2N] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.