Abstract

This study demonstrated that immobilized Candida antarctica lipase B (N435) catalysis in bulk leads to higher molecular weight poly(glycerol sebacate), PGS, than self-catalyzed condensation polymerization. Since the glass-transition temperature, fragility, modulus, and strength for rubbery networks are inversely dependent on the concentration of chain ends, higher molecular weight PGS prepolymers will enable the preparation of cross-linked PGS matrices with unique mechanical properties. The evolution of molecular species during the prepolymerization step conducted at 120 °C for 24 h, prior to enzyme addition, revealed regular decreases in sebacic acid and glycerol-sebacate dimer with corresponding increases in oligomers with chain lengths from 3 to 7 units such that a homogeneous liquid substrate has resulted. At 67 h, for N435-catalyzed PGS synthesis, the carboxylic acid conversion reached 82% without formation of a gel fraction, and number-average molecular weight (Mn) and weight-average molecular weight (Mw) values reached 6000 and 59 400 g/mol, respectively. In contrast, self-catalyzed PGS condensation polymerizations required termination at 55 h to avoid gelation, reached 72% conversion, and Mn and Mw values of 2600 and 13 800 g/mol, respectively. We also report the extent that solvent fractionation can enrich PGS in higher molecular weight chains. The use of methanol as a nonsolvent increased Mn and Mw by 131.7 and 18.3%, respectively, and narrower dispersity (Đ) decreased by 47.7% relative to the nonfractionated product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call