Abstract

Here, we have reported a new approach for utilizing oleic acid-Pluronic L-64 block copolymer coated iron oxide nanoparticles as supports for enzyme immobilization. Iron oxide nanoparticles were prepared by a coprecipitation method and were coated with oleic acid and Pluronic to achieve higher stability and dispersibility. The surface morphology and size of the particle, as determined by transmission electron microscopy (TEM), was +/- 10 nm. X-ray diffraction (XRD) patterns were taken over a range from 10 degrees to 90 degrees 20, using Cu K alpha radiation. Saturation magnetization values, measured at 300 K, varied from 34.6 emu/g to 60.8 emu/g. The possible interaction behavior of oleic acid and Pluronic was observed by Fourier transform infrared (FTIR) analysis and nuclear magnetic resonance (NMR) studies. Further potential of this material as a support for lipase immobilization and enzymatic hydrolysis at the oil/water interface was also investigated. The features of the surface-coated magnetic particles enable the adsorption of lipase from Candida cylindraces via strong hydrophobic interactions, which enhances the stability of the adsorbed enzyme molecules. The stability of the catalyst and, hence, its industrial applicability was tested by performing subsequent reaction cycles for the hydrolysis of olive oil. The activity of the immobilized lipase, pretreated with its substrate, was 510 U/g-matrix and was observed to be maintained at levels as high as 90% of its original activity for up to at least seven reuses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call