Abstract

Lipase‐catalyzed synthesis of lauroyl glucose ester was continuously performed in a biphasic system consisting of supercritical CO2 and an ionic liquid (IL). Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy are employed to identify the product lauroyl glucose ester. The effects of reaction pressure, temperature, substrate flow rate, the amount of enzyme, and the amount of IL on the glucose conversion rate are investigated. The highest glucose conversion of up to 95.5% could be achieved at the optimal condition, which is higher than that in the pure IL. The enzyme activity in the biphasic system was 18.19 μmol/g/min, which is much higher than that in the pure IL. The continuous reaction in the binary system could last for 10 h at high enzyme activity. The combination of supercritical CO2 and ILs could not only improve the reaction rate and yield, which are attributed to the fast mass transfer rate and enhanced enzyme activity and lifespan, but also make the product separation and enzyme/ILs recycling easier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.