Abstract

Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with β-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.