Abstract

In this paper, we investigate the following fractional elliptic system \begin{document}$\left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{\alpha /2}}u(x) = f(x){{v}^{q}}(x),&x\in {{R}^{n}}, \\ {{(-\Delta )}^{\beta /2}}v(x) = h(x){{u}^{p}}(x),&x\in {{R}^{n}}, \\\end{array} \right.$ \end{document} where $1≤p, q < ∞$, $0 < α, β < 2$, $f(x)$ and $h(x)$ satisfy suitable conditions. Applying the method of moving planes, we prove monotonicity without any decay assumption at infinity. Furthermore, if $ α = β$, a Liouville theorem is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.