Abstract

Abstract This chapter returns to the discussion of constrained Hamiltonian dynamics, now in the canonical setting, including topics such as regular Lagrangians, constraint surfaces, Hessian conditions and the constrained action principle. The standard approach to Hamiltonian mechanics is to treat all the variables as being independent; in the constrained case, a constraint function links the variables so they are no longer independent. In this chapter, the Dirac–Bergmann theory for singular Lagrangians is developed, using an action-based approach. The chapter then investigates consistency conditions and Dirac’s different types of constraints (i.e. first-class constraints, second-class constraints, primary constraints and secondary constraints) before deriving the Dirac bracket from simple arguments. The Jackiw–Fadeev constraint formulation is then discussed before the chapter closes with the Güler formulation for a constrained Hamilton–Jacobi theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call