Abstract

Liouville theory describes the dynamics of surfaces with constant negative curvature and can be used to study the Weil-Petersson geometry of the moduli space of Riemann surfaces. This leads to an efficient algorithm to compute the Weil-Petersson metric to arbitrary accuracy using Zamolodchikov’s recursion relation for conformal blocks. For example, we compute the metric on M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{M} $$\\end{document}0,4 numerically to high accuracy by considering Liouville theory on a sphere with four punctures. We numerically compute the eigenvalues of the Weil-Petersson Laplacian, and find evidence that the obey the statistics of a random matrix in the Gaussian Orthogonal Ensemble.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call