Abstract
We investigate the Liouville properties of ancient solutions to the V-harmonic map heat flows from complete noncompact Riemannian manifolds with nonnegative Bakry–Emery Ricci curvature. When the target is a simply connected complete Riemannian manifold with nonpositive sectional curvature, then a Liouville theorem of ancient solutions holds under certain growth condition near infinity. When the target is a complete Riemannian manifold with sectional curvature bounded above by a positive constant, we show that if the image of the ancient solution u is contained in a regular ball near infinity, then u is a constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.