Abstract

One of the main approaches to investigating sub-Riemannian problems is Mitchell's theorem on nilpotent approximation, which reduces the analysis of a neighbourhood of a regular point to the analysis of the left-invariant sub-Riemannian problem on the corresponding Carnot group. Usually, the in-depth investigation of sub-Riemannian shortest paths is based on integrating the Hamiltonian system of Pontryagin's maximum principle explicitly. We give new formulae for sub-Riemannian geodesics on a Carnot group with growth vector and prove that left-invariant sub-Riemannian problems on free Carnot groups of step 4 or greater are Liouville nonintegrable. Bibliography: 30 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.