Abstract
Network Kernel Density Visualization (NKDV) has often been used in a wide range of applications, e.g., criminology, transportation science, and urban planning. However, NKDV is computationally expensive, which cannot be scalable to large-scale datasets and high resolution sizes. Although a recent work, called aggregate distance augmentation (ADA), has been developed for improving the efficiency to generate NKDV, this method is still slow and does not take the resolution size into account for optimizing the efficiency. In this paper, we develop a new solution, called LION, which can reduce the worst-case time complexity for generating high-resolution NKDV, without increasing the space complexity. Experiment results on four large-scale location datasets verify that LION can achieve 2.86x to 35.36x speedup compared with the state-of-the-art ADA method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.