Abstract

Diet has been shown to have a significant impact on microbial community composition in the rumen and could potentially be used to manipulate rumen microbiome structure to achieve specific outcomes. There is some evidence that a window may exist in early life, while the microbiome is being established, where manipulation through diet could lead to long-lasting results. The aim of this study was to test the hypothesis that dietary supplementation in early life will have an effect on rumen microbial composition that will persist even once supplementation is ceased. Twenty-seven new-born lambs were allocated to one of three dietary treatments; a control group receiving standard lamb meal, a group receiving lamb meal supplemented with 40 g kg-1 DM of linseed oil and a group receiving the supplement pre-weaning and standard lamb meal post-weaning. The supplement had no effect on average daily feed intake or average daily weight gain of lambs. Bacterial and archaeal community composition was significantly (p = 0.033 and 0.005, respectively) different in lambs fed linseed oil throughout the study compared to lambs on the control diet. Succinivibrionaceae, succinate producers, and Veillonellaceae, propionate producers, were in a higher relative abundance in the lambs fed linseed oil while Ruminococcaceae, a family linked with high CH4 emitters, were in a higher relative abundance in the control group. The relative abundance of Methanobrevibacter was reduced in the lambs receiving linseed compared to those that didn’t. In contrast, the relative abundance of Methanosphaera was significantly higher in the animals receiving the supplement compared to animals receiving no supplement (40.82 and 26.67%, respectively). Furthermore, lambs fed linseed oil only in the pre-weaning period had a bacterial community composition significantly (p = 0.015) different to that of the control group, though archaeal diversity and community structure did not differ. Again, Succinivibrionaceae and Veillonellaceae were in a higher relative abundance in the group fed linseed oil pre-weaning while Ruminococcaceae were in a higher relative abundance in the control group. This study shows that lambs fed the dietary supplement short-term had a rumen microbiome that remained altered even after supplementation had ceased.

Highlights

  • Ruminant livestock, such as cattle and sheep, rely wholly on microorganisms in their rumen to degrade fibrous feed and allow them to obtain nutrients from food

  • The rumen microbiome consists of billions of interacting species of bacteria, protozoa, archaea, fungi and bacteriophage working together to digest fiber, starch, fats and sugars, and produce volatile fatty acids (VFAs), primarily acetate, butyrate and propionate (Hobson and Stewart, 1997)

  • At 2 weeks of age, twenty seven lambs were offered ad-lib access to either a standard lamb meal or the standard lamb meal supplemented with 4% linseed oil

Read more

Summary

Introduction

Ruminant livestock, such as cattle and sheep, rely wholly on microorganisms in their rumen to degrade fibrous feed and allow them to obtain nutrients from food. As a by-product of feed digestion, rumen microbes produce compounds which cannot be used by the host, such as carbon dioxide and hydrogen. Methanogens, a group of archaea, combat this problem by reducing hydrogen to methane (CH4) which is removed from the body through eructation (Hobson and Stewart, 1997). This results in increased methane in the atmosphere and an energy loss of 2–13% for the animal, impacting feed efficiency in animal production (Johnson and Johnson, 1995)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call