Abstract

BackgroundIntramuscular fat (IMF) content is a relevant trait for high-quality meat products such as dry-cured ham, but increasing IMF has the undesirable correlated effect of decreasing lean growth. Thus, there is a need to find selection criteria for IMF independent from lean growth. In pigs, the proportion of linoleic (C18:2) and arachidonic (C20:4) acids decline with fat deposition and therefore they can be considered as indicators of fatness. The aim of this research was to estimate the genetic variation for C18:2 and C20:4 in IMF and their genetic correlations with IMF and lean growth traits, with the objective to assess their potential as specific biomarkers of IMF. The analysis was conducted using a full-pedigreed Duroc resource line with 91,448 records of body weight and backfat thickness (BT) at 180 days of age and 1371 records of fatty acid composition in the muscle gluteus medius.ResultsThe heritability estimates for C18:2 and C20:4 in IMF, whether expressed in absolute (mg/g of muscle) or in relative (mg/g of fatty acid) terms, as well as for their ratio (C20:4/C18:2), were high (> 0.40), revealing that the C18:2 to C20:4 pathway is subjected to substantial genetic influence. Litter effects were not negligible, with values ranging from 8% to 15% of the phenotypic variance. The genetic correlations of C18:2 and C20:4 with IMF and BT were negative (− 0.75 to − 0.66, for IMF, and − 0.64 to − 0.36, for BT), if expressed in relative values, but almost null (− 0.04 to 0.07), if expressed in absolute values, except for C18:2 with IMF, which was highly positive (0.88). The ratio of C20:4 to C18:2 also displayed a stronger genetic correlation with IMF (− 0.59) than with BT (− 0.10).ConclusionsThe amount of C18:2 in muscle can be used as an IMF-specific biomarker. Selection for the absolute amount of C18:2 is expected to deliver a similar response outcome as selection for IMF at restrained BT. Further genetic analysis of the C18:2 metabolic pathway may provide new insights into differential fat deposition among adipose tissues and on candidate genes for molecular markers targeting specifically for one of them.

Highlights

  • Linoleic acid (C18:2) is a major ingredient of feeds and the most abundant PUFA in pig adipose tissue and muscle [1]

  • The line was completely closed in 1991 and since it has been selected for an index including body weight (BW), backfat thickness (BT), and Intramuscular fat (IMF)

  • We show that the genetic variation structure of the fatty acids in this pathway with IMF and BT differs by fatty acid and on whether they are expressed in absolute or relative values

Read more

Summary

Introduction

Linoleic acid (C18:2) is a major ingredient of feeds and the most abundant PUFA in pig adipose tissue and muscle [1]. C20:2 and C20:4 are sourced from diet, they can be Intramuscular fat (IMF) content and fatty acid composition are relevant traits for high-quality Mediterranean meat products such as dry-cured ham. Increasing IMF has the undesirable correlated effect of decreasing lean growth, so that, in this scenario, a common commercial target is to find selection criteria for IMF independent from lean growth [5]. Intramuscular fat (IMF) content is a relevant trait for high-quality meat products such as dry-cured ham, but increasing IMF has the undesirable correlated effect of decreasing lean growth. The proportion of linoleic (C18:2) and arachidonic (C20:4) acids decline with fat deposition and they can be considered as indicators of fatness. The analysis was conducted using a full-pedigreed Duroc resource line with 91,448 records of body weight and backfat thickness (BT) at 180 days of age and 1371 records of fatty acid composition in the muscle gluteus medius

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.